根据系统的状态信息和评价准则选取最优策略的数学理论。决策论是运筹学的一个分支和决策分析的理论基础。决策论是根据信息和评价准则,用数量方法寻找或选取最优决策方案的科学,是运筹学的一个分支和决策分析的理论基础。在实际生活与生产中对同一个问题所面临的几种自然情况或状态,又有几种可选方案,就构成一个决策,而决策者为对付这些情况所取的对策方案就组成决策方案或策略。

基本概况

效用理论  效用理论是决策论的基础。事物的不确定性可看作是许多简单随机事件的复合。每一个简单随机事件是由两个互斥事件与组成的。事件 发生的概率为,事件 发生的概率为,则随机事件记作。在简单随机事件的集合内引进“优先”或“偏好”的概念。并在此随机事件集合的基础上建立公理体系,即假设在随机事件集合中存在下列条件:①相对偏好顺序;②偏好关系具有可传递性;③简单随机事件间的可比性;④偏好可以量化;⑤不确定性判断可以量化;⑥等价随机事件可互相代换。在这样的条件下可用一个数值来描述简单随机事件的期望效益,称为效用。由简单随机事件的效用可确定一般不确定事件的效用。在对事件不确定性判断进行量化时,需要利用各种知识,如系统本身的特性,一些必要的统计知识,以及决策者根据经验对事件不确定性的主观估算等。

决策树  决策论中最常用的方法之一是决策树方法。下图为典型的决策树。图中的长方形小框表示由人选择的决策点。把需要作决策的问题过程画成示意图,由图的最左边出发,在作决策之前先作试验。例如由R个试验中选取试验er,费用为cr,试验结果有等共 T个。在试验 er条件下结果 ot 发生的概率记为。设此时有等共I个备选决策方案。若选择决策di,则这时可能出现共J种状态。在试验er中出现结果ot时选取决策di的条件下,状态sj出现的概率记作Prtij(sj)。此时可能有L种后果,而Prtij(xl)表示在试验er中出现结果ot时,选取决策di而出现状态sj的情况下,发生后果xl的概率,其效用记作 u(xl)。图中e0表示不作试验的情况。决策树的方法是顺着树的各个分枝进行分析,并计算各种可能情况的概率的大小,最后计算在这些条件下最终出现的后果的效用,将各种效用加以比较,从中选取最佳效用所对应的试验与决策作为应取的决策。

贝叶斯决策  由于决策总是在事件发生之前作出,而事件是否发生又是不确定的,因此常采取统计学中贝叶斯公式对事件发生的概率作先验估计,这就是贝叶斯决策方法。

由于事件的发生具有不确定性,这就使决策带有一定的风险性。人们对于风险的态度不同,对效用的估计也不同。对事物发展持保守看法而不愿冒险的人,对效用估计往往偏低;倾向于冒险的人,对效用的估计往往偏高。也有人取中庸态度,对效用的估计介于两者之间。

参考资料